Genetics of Resistance and Pathogenicity in the Maize/Setosphaeria turcica Pathosystem and Implications for Breeding

نویسندگان

  • Ana L. Galiano-Carneiro
  • Thomas Miedaner
چکیده

Northern corn leaf blight (NCLB), the most devastating leaf pathogen in maize (Zea mays L.), is caused by the heterothallic ascomycete Setosphaeria turcica. The pathogen population shows an extremely high genetic diversity in tropical and subtropical regions. Varietal resistance is the most efficient technique to control NCLB. Host resistance can be qualitative based on race-specific Ht genes or quantitative controlled by many genes with small effects. Quantitative resistance is moderately to highly effective and should be more durable combatting all races of the pathogen. Quantitative resistance must, however, be analyzed in many environments (= location × year combinations) to select stable resistances. In the tropical and subtropical environments, quantitative resistance is the preferred option to manage NCLB epidemics. Resistance level can be increased in practical breeding programs by several recurrent selection cycles based on disease severity rating and/or by genomic selection. This review aims to address two important aspects of the NCLB pathosystem: the genetics of the fungus S. turcica and the modes of inheritance of the host plant maize, including successful breeding strategies regarding NCLB resistance. Both drivers of this pathosystem, pathogen, and host, must be taken into account to result in more durable resistance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Analysis of the Genotype Segregation at Ssr Loci among Double-Cross F1 Population Resistant to Northern Corn Leaf Blight and Head Smut in Maize

With the help of previously reported linked-markers to resistance genes Ht1, Ht2, Ht3, HtN1 and QTLs to northern corn leaf blight (NCLB) and resistance QTLs to head smut, total 94 tightly linked SSR markers falling in or nearby the reported markers were chosen from the public database of maize genome to conduct this study. Ten (10) SSR markers showing polymorphisms among 3 parents (one resistan...

متن کامل

The Venturia Apple Pathosystem: Pathogenicity Mechanisms and Plant Defense Responses

Venturia inaequalis is the causal agent of apple scab, a devastating disease of apple. We outline several unique features of this pathogen which are useful for molecular genetics studies intended to understand plant-pathogen interactions. The pathogenicity mechanisms of the pathogen and overview of apple defense responses, monogenic and polygenic resistance, and their utilization in scab resist...

متن کامل

An Update on Genetic Resistance of Chickpea to Ascochyta Blight

Ascochyta blight (AB) caused by Ascochyta rabiei (Pass.) Labr. is an important and widespread disease of chickpea (Cicer arietinum L.) worldwide. The disease is particularly severe under cool and humid weather conditions. Breeding for host resistance is an efficient means to combat this disease. In this paper, attempts have been made to summarize the progress made in identifying resistance sour...

متن کامل

Genomic Prediction of Northern Corn Leaf Blight Resistance in Maize with Combined or Separated Training Sets for Heterotic Groups

Northern corn leaf blight (NCLB), a severe fungal disease causing yield losses worldwide, is most effectively controlled by resistant varieties. Genomic prediction could greatly aid resistance breeding efforts. However, the development of accurate prediction models requires large training sets of genotyped and phenotyped individuals. Maize hybrid breeding is based on distinct heterotic groups t...

متن کامل

Factors affecting delivery of DREB1A gene in maize B73 split-seeds via biolistic system

Immature embryos as a choice tissue for genetic transformation of maize have a few limitations, such as genotype dependence, time-consuming and requiring a well-equipped greenhouse for access, at any time. In the present study, the split-seed explants were used for genetic transformation of maize, B73 line. The transformation of maize split-seed explants from the inbred line B73, for resistance...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017